The Buffon's needle problem for random planar disk-like Cantor sets
نویسندگان
چکیده
We consider a model of randomness for self-similar Cantor sets finite and positive 1-Hausdorff measure. find the sharp rate decay probability that Buffon needle lands δ-close to set this particular randomness. Two quite different models sets, by Peres Solomyak, Shiwen Zhang, appear have same order probability: clog1δ. In note, we prove third randomness, which asserts vague feeling any “reasonable” random length will Favard clog1δ its δ-neighbourhood. The estimate from below was obtained long ago Mattila.
منابع مشابه
Buffon’s needle estimates for rational product Cantor sets
Let S∞ = A∞ × B∞ be a self-similar product Cantor set in the complex plane, defined via S∞ = ⋃L j=1 Tj(S∞), where Tj : C→ C have the form Tj(z) = 1 Lz+zj and {z1, . . . , zL} = A+iB for some A,B ⊂ R with |A|, |B| > 1 and |A||B| = L. Let SN be the L−N -neighbourhood of S∞, or equivalently (up to constants), its N -th Cantor iteration. We are interested in the asymptotic behaviour as N → ∞ of the...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولRandom Intersections of Thick Cantor Sets
Let C1, C2 be Cantor sets embedded in the real line, and let τ1, τ2 be their respective thicknesses. If τ1τ2 > 1, then it is well known that the difference set C1 − C2 is a disjoint union of closed intervals. B. Williams showed that for some t ∈ int(C1−C2), it may be that C1∩ (C2 + t) is as small as a single point. However, the author previously showed that generically, the other extreme is tru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2023
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2023.127622